
Part 1 - Getting Started
Table of Contents

Setting up the Template
Adding an ExcelWriter Reference in Visual Studio
Writing the Code
Formatting cells with data markers
Final Code
Downloads
Next Steps

Setting up the Template

About templates and data markers
An ExcelWriter is an Excel file that contains ExcelWriter . A is a cell value beginning with that specifiestemplate data markers data marker %%=
a database column, variable, or array to insert into the spreadsheet column. Data markers are added to a worksheet in Excel and then bound to
data sources in code. ExcelWriter populates the data markers with values from the data sources when the code is executed.

Data marker syntax
The basic syntax for a data marker is , where is the name of the data source and %%=[DataSourceName].[ColumnName] DataSourceName C

 is the name of the column in the data source. You need to follow these rules when naming data markers:olumnName

Names must begin with a letter (A-Z, a-z)
The brackets () are optional, but must be used when the data marker contains spaces or Unicode characters[]

The following is a list of characters allowed in data marker names without brackets:
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890_

Names must exactly match the names in the data source.
If a column in a database is 'Street Address', the must be to account for the space. Similarly,ColumnName [Street Address]
if a data source name is "DataSource1", the data marker name must be or .DataSource1 [DataSource1]

For more specific information about creating data markers, see Creating Data Markers

Adding data markers to the the template
The final template will look something like this:

ExcelWriter templates are typically created as standard Excel files (XLS, XLSX, XLSM), although "template" formats (XLT, XLTX,
XLTM) are also supported by ExcelWriter.

https://wiki.softartisans.com/display/EW12/Creating+Data+Markers

Note: At the top of the worksheet, we will display the fiscal year, the company division and group. Below will be 2 tables: one to show the top 5
expenses and another to show all the expenses.

1. Start with a blank .xlsx file. Save the file as template.xlsx.

2. Add some data markers for Replace Fiscal Year, Division, and Group. These values will be a single row of a data set called "Header". The
column names will be "FiscalYear", "Division" and "Group".

3. Next add data markers for Top Expenses and All Expenses, which will be table header columns:

The data source name for Top Expenses will be "Top 5 Expenses" with column names "Description" and "Expenses".
The data source name for All Expenses will be "All Expenses" with the same column names.
Since the data source names have spaces, the data markers need to be in brackets.

Following the Sample Code
In the downloadable under , there is a completed template file located in ExcelWriter_Basic_Tutorials.zip SimpleExpenseSummary Simp

.leExpenseSummary/templates/part1_template.xlsx

https://wiki.softartisans.com/download/attachments/11764940/ExcelWriter_Basic_Tutorials.zip?version=1&modificationDate=1522133625097&api=v2

1.

2.

We're done adding the data markers, so next we'll hook the template up to some data before we do any formatting.

Adding an ExcelWriter Reference in Visual Studio

Create a .NET project and add a reference to the ExcelWriter library.

Open Visual Studio and create a .NET project.
The sample code uses a web application.

Add a reference to SoftArtisans.OfficeWriter.ExcelWriter.dll
SoftArtisans.OfficeWriter.ExcelWriter.dll is located under Program Files > SoftArtisans > OfficeWriter > dotnet > bin

Writing the Code

1. Include the SoftArtisans.OfficeWriter.ExcelWriter namespace in the code behind

using SoftArtisans.OfficeWriter.ExcelWriter;

2. In the method that will actually run the report, instantiate the object.ExcelTemplate

ExcelTemplate XLT = new ExcelTemplate();

3. Open the template file with the method.ExcelTemplate.Open

Following the Sample Code
In the sample code, the reference to has already been added to the pSoftArtisans.OfficeWriter.ExcelWriter.dll SimpleExpenseSummary
roject.

Following the Sample Code
There is a sample web application page and code behind available in the dPart1.aspx Part1.aspx.cs SimpleExpenseSummary/
irectory that shows the completed code.

https://wiki.softartisans.com/display/EW12/ExcelTemplate
https://wiki.softartisans.com/display/EW12/ExcelTemplate.Open

XLT.Open(Page.MapPath("//templates//part1_template.xlsx"));

4. Create a object. Although we won't be changing any of the binding properties, a is aDataBindingProperties DataBindingProperties
required parameter in all data binding methods.ExcelTemplate

DataBindingProperties dataProps = XLT.CreateDataBindingProperties();

5. Create an array for the header values and a array for the column names.object string

ExcelTemplate can be bound to numerous types of .NET data structures: single variables, arrays (1-D, jagged, multi-dimensional), , DataSet D
, etc. The source of the data can come from anywhere.ataTable IDataReader

Some of the aforementioned structures have built in column names, such as the . When working with arrays, which don't have built inDataTable
column names, you have to define the column names in a separate array.string

//This report is for FiscalYear: FY 2004, Division: Canadian Division, Group: Research
and Development
object[] valuesArray = { "FY 2004", "Canadian Division", "Research and Development" };

//The column names are FiscalYear, Division, Group
string[] columnNamesArray = { "FiscalYear", "Division", "Group" };

6. Use the method to bind the header data to the data markers in the template file (, ExcelTemplate.BindRowData %%=Header.FiscalYear
,).%%=Header.Division %%=Header.Group

BindRowData() binds a single row of data to the template, but the data markers in the template do not need to be in a single row.

XLT.BindRowData(valuesArray, columnNamesArray, "Header", dataProps);

7. Get the data for the Top 5 Expenses and All Expenses data sets.

These calls are to a helper method that parses the CSV files and returns a with the values.GetCSVData DataTable

DataTable dtTop5 = GetCSVData(Page.MapPath("//data//Part1_Top5Expenses.csv"));
DataTable dtAll = GetCSVData(Page.MapPath("//data//Part1_AllExpenses.csv"));

If you are following in your own project and would like to parse the CSV files as well, you will need to:

Add a reference to GenericParsing.dll
Include at the top of your code.GeneringParsing
Add the method that can be found in the sample code.GetCSVData

8. Use to bind the data for the Top 5 Expenses and All Expenses data sets.ExcelTemplate.BindData

Recall that the data source names (,) need to match the data marker names exactly.[Top 5 Expenses] [All Expenses]

XLT.BindData(dtTop5, "Top 5 Expenses", dataProps);
XLT.BindData(dtAll, "All Expenses", dataProps);

Following the Sample
In the sample project, we are parsing CSV files with query results, rather than querying a live database. The CSV files are available
under the directory. There is a copy of the CSV parser, in the directory of the project isdata GenericParsing.dll bin GetCSVData
defined in in a marked .Part1.aspx.cs region Utility Methods

https://wiki.softartisans.com/display/EW12/DataBindingProperties
https://wiki.softartisans.com/display/EW12/ExcelTemplate.BindRowData
https://wiki.softartisans.com/display/EW12/ExcelTemplate.BindData

9. Call to import the data into the file.ExcelTemplate.Process()

XLT.Process();

10. Call to save the output file.ExcelTemplate.Save

ExcelTemplate has several output options: save to disk, save to a stream, stream the output file in a page's inline or as anResponse
attachment.

XLT.Save(Page.Response, "Part1_Output.xlsx", false);

11. Run your code.

Here is an example of the output from the sample code:

https://wiki.softartisans.com/pages/viewpage.action?pageId=11763802
https://wiki.softartisans.com/display/EW12/ExcelTemplate.Save

Formatting cells with data markers

1. In the screen shot below we have made the cell font size 18, is , and %%=Header.FiscalYear %%=Header.Division bold %%=Header.Gr
 is .oup italic

Data markers take the formatting and style properties of the cell that they are in. This means if a data marker is bold, then the value that
replaces the data marker will be bold as well.

2. Since the 'Expenses' data will be currency values, add a currency number formatting to the cells containing the data markers. ThisExpenses
number formatting will be repeated for each row of data that is inserted.

3. Add some borders to the cells in the Top Expenses and All Expenses tables. Then format the column headers as desired. Below is a screen
shot of the final template:

When importing multiple rows of data, ExcelWriter will insert a new row in the worksheet for each row of data, starting from the row with
the data markers. Each of the new rows will take on the styles and formatting of the cells that contain the data markers. For more
details on this behavior see .How ExcelWriter Inserts Rows

https://wiki.softartisans.com/display/EW12/How+ExcelWriter+Inserts+Rows

4. Run the code with the updated template file. Here's a screenshot of the output with all the formatting applied:

Note: The formatting has been applied to the values that replaced the data markers, including the data sets with multiple rows. Also note that the
Top 5 Expenses and All Expenses tables have expanded to accommodate the new rows of data (i.e. All Expenses was pushed down when the
Top 5 Expenses data was imported).

Final Code

using SoftArtisans.OfficeWriter.ExcelWriter;
...
ExcelTemplate XLT = new ExcelTemplate();

XLT.Open(Page.MapPath("//templates//part1_template.xlsx"));

DataBindingProperties dataProps = XLT.CreateDataBindingProperties();

object[] valuesArray = { "FY 2004", "Canadian Division", "Research and Development" };
string[] columnNamesArray = { "FiscalYear", "Division", "Group" };

XLT.BindRowData(valuesArray, columnNamesArray, "Header", dataProps);

DataTable dtTop5 = GetCSVData(Page.MapPath("//data//Part1_Top5Expenses.csv"));
DataTable dtAll = GetCSVData(Page.MapPath("//data//Part1_AllExpenses.csv"));

XLT.BindData(dtTop5, "Top 5 Expenses", dataProps);
XLT.BindData(dtAll, "All Expenses", dataProps);

XLT.Process();

XLT.Save(Page.Response, "Part1_Output.xlsx", false);

Downloads
You can download the code for the Basic ExcelWriter Tutorials as a Visual Studio solution, which includes the Simple Expense Summary.

ExcelWriter_Basic_Tutorials.zip

Next Steps
Continue on to Part 2: Working with Formulas

https://wiki.softartisans.com/download/attachments/11764940/ExcelWriter_Basic_Tutorials.zip?version=1&modificationDate=1522133625097&api=v2
https://wiki.softartisans.com/display/EW12/Part+2+-+Working+with+Formulas

	Part 1 - Getting Started

