Addressing Cells

There are three ways to address cells, areas, and ranges using ExcelApplication:

® Excel's Al Reference Style
® Excel's R1C1 Reference Style
®* Row Number and Column Number

Excel's A1l Reference Style

Al-style references are easy to read, intuitive, and match the default reference style seen in Microsoft Excel.

Example

Excel Application xla = new Excel Application();
Wor kbook wb = xl a. Create();

Wor ksheet ws = wb. Wr ksheet s[0] ;

ws. Cel I s["A3"]. Val ue = "Jan";

ws. Cel | s["B3"]. Value = "Feb";

ws. Cel | s["C3"]. Value = "MNar";

Area a = ws. Creat eArea("=Al: G10");

Al cell references are relative by default. Therefore, if you enter "=B1" in cell A1 and drag Al down, the formula in cell Ax will be "=Bx". To make
an Al row or column reference absolute, prepend a dollar sign to the row or column. For example, if you enter "=B$1" in cell Al and drag Al
down, the formula in cell Ax will be "=B$1".

The reference style used in the generated workbook (when it is opened in Excel) is determined by the value of the property
Workbook.UseRCFormulaNotation. If it is false (the default value), Excel will use Al references. If UseRCFormulaNotation is set to true, Excel will
use R1C1-style references.

Excel's R1C1 Reference Style

In the R1C1 style, the location of a cell is specified with an "R" followed by a row number and a "C" followed by a column number. R1C1
references can be either absolute or relative. To create an absolute reference, specify the row and column numbers without brackets. For
example, "=R1C2" equates to row 1, column 2. To create a relative reference for a cell, specify the row and column numbers in brackets; and
enter the difference between that cell's row and column numbers and those of the cell it references. Use negative numbers to reference cells
above or to the left of a cell. Use positive numbers to reference cells below or to the right of a cell. For example, entering "=R[-2]C[-1]" in cell
R3C2 causes it to refence the value of cell R1C1.

Example

Relative R1C1 references enable you to reuse a single formula in multiple rows or columns. The following example copies one formula to three
different columns to calculate the sum of those columns.

Excel Application xla = new Excel Application();
Wor kbook wb = xl a.Create();

wh. UseRCFor nul aNot ati on = true;

Wor ksheet ws = wh. Wir ksheet s[0] ;

String fornmulaString = "=SUM R -12]C R -1]O";
Cell columTot al ;
for (int i =0;i < 3; i++)
{
columTotal = ws.Cel Is[13, i + 1];

columTot al . Formul a = fornul aStri ng;

The reference style used in the generated workbook (when it is opened in Excel) is determined by the value of the property

Workbook.UseRCFormulaNotation. If it is false (the default value), Excel will use Al references. If UseRCFormulaNotation is set to true, Excel will

use R1C1-style references. Note: Workbooks created with ExcelApplication default to Fal se.

There are several valid ways of addressing a cell or an area using RC notation:

Single Cell, Absolute RxCy
Single Cell, Row Relative R[x]Cy
Single Cell, Column Relative RxCly]
Single Cell, Both Relative RIX]Cly]
Single Cell, Same Relative Row, Absolute Column RCy
Single Cell, Same Relative Row, Relative Column RC[y]
Single Cell, Absolute Row, Same Relative Column RxC
Single Cell, Relative Row, Same Relative Column R[x]C
Entire Row, Absolute Rx
Entire Row, Relative R[x]
Entire Row, Same, Relative R
Entire Column, Absolute Cy
Entire Column, Relative Cly]
Entire Column, Same, Relative C

Row Number and Column Number

Addressing cells by number allows you to iterate over cells in your ExcelWriter code. Row and Column number references are also processed
faster than Excel-style references.

The following specifies cell Al by 0-based row and column numbers: The first parameter of the Cell property is the row index, the second is the
column index.

sheet1l. Cells[2, 0].Value = "SoftArtisans O ficeWiter";

Using row and column numbers makes it easy to iterate over cells:for(int iRow = 3; iRow <= 23; iRow++)

for(int iCol = 0; iCol <= 2; iCol++)
sheet 1. Cel I s[i Row, iCol].Value = iRow + iCol;

	Addressing Cells

