
Part 1 - Creating a Dynamic Template
Table of Contents

Introduction
Setting up the template
Adding an ExcelWriter Reference in Visual Studio

Writing the Code
Getting Started
Customizing the template
Binding Data Dynamically

Downloads
Next Steps

Introduction
The object is used for template-driven document generation. This object opens an ExcelWriter template file, populates it withExcelTemplate
data from a specified data source, and generates a new Excel workbook. An Excel file uploaded as an is not directlyExcelTemplate object
modifiable at runtime.

The object is an Excel file engine that can be used to create, open, modify, and save workbooks. A single instance of ExcelApplication Exce
 can generate multiple Excel workbooks.lApplication

This tutorial opens an Excel template file formatted as for (i.e. it contains data markers) and makes customizations using ExcelTemplate Excel
 object, based on a user's selections. In particular, it highlights the functionality of the method. Then data is bound toApplication CopySheet

the template using , again, based on a user's selections.ExcelTemplate

Setting up the template

The template file should look something like this:

This tutorial assumes a basic understanding of the object. If you have not familiar with creating an Excel template andExcelTemplate
binding data with , please go through the tutorial first.ExcelTemplate Simple Expense Summary

Following the Sample Code
In the downloadable , there is a completed template file located in ExcelWriter_Basic_Tutorials.zip ExtendedSalesSummary/templates/t

.emplate.xlsx
A copy of the completed template file is also available .here

https://wiki.softartisans.com/display/EW8/ExcelTemplate
https://wiki.softartisans.com/display/EW8/ExcelApplication
https://wiki.softartisans.com/pages/viewpage.action?pageId=1967058
https://wiki.softartisans.com/display/EW8/Simple+Expense+Summary
https://wiki.softartisans.com/download/attachments/1966176/ExcelWriter_Basic_Tutorials.zip?version=1&modificationDate=1392178167513&api=v2
https://wiki.softartisans.com/download/attachments/1966084/template.xlsx?version=1&modificationDate=1340051000217&api=v2

1.
2.

In the template, the data marker is concatenated with "Sales Summary -". Data markers cannot be used directly in%%=Header.FiscalYear
formulas; the data marker needs to be in a separate cell, which can be referenced in an Excel formula.

In the header, there is a formula , where N1 is the cell that actually contains the =CONCATENATE("Sales Summary - ", N1) %%=Header.Fi
 data marker. This is shown in the image below.scalYear

Adding an ExcelWriter Reference in Visual Studio

To create a .NET project and add a reference to the ExcelWriter library:

Open Visual Studio and create a .NET project.
Add a reference to SoftArtisans.OfficeWriter.ExcelWriter.dll

Following the Sample Code
In the sample code, the reference to has already been added to the SoftArtisans.OfficeWriter.ExcelWriter.dll ExtendedS

 web application project.alesSummary

2.

SoftArtisans.OfficeWriter.ExcelWriter.dll is located under Program Files > SoftArtisans > OfficeWriter > dotnet
> bin

Writing the Code

There are two main sections of code that will be covered:

ExcelApplication code to customize the template based on a list of countries that a user has selected
In the sample, this code is contained in the methodGenerateTemplate()

ExcelTemplate code to bind data to the customized template
In the sample, this code is contained in the methodPopulateTemplate()

Getting Started
1. Include the SoftArtisans.OfficeWriter.ExcelWriter namespace in the code behind:

using SoftArtisans.Office.ExcelWriter;

2. At the top of the class definition, define global variations for the , , and objects:ExcelApplication ExcelTemplate Workbook

private ExcelApplication xla;
private ExcelTemplate xlt;
private Workbook wb;

Customizing the template
1. Define a method to contain the code for customizing the sheet. In the sample, this method is called ExcelApplication GenerateTemplate
()

//Use ExcelApplication to make a copy of a regional worksheet for each
//country that is selected by the user.
protected void GenerateTemplate()
{

}

2. In the helper method, instantiate the object.ExcelApplication

ExcelApplication xla = new ExcelApplication();

3. Open the template file with method.Workbook ExcelApplication.Open

Following the Sample Code
The code behind for this part of the tutorial can be found under .Extended Sales Summary/Part1.aspx.cs

Following the Sample Code
In the sample code, you will also see defined with the global variables. This is the list that willList<string> selectedCountries
contain the countries the user selects from the web form in the sample code.

https://wiki.softartisans.com/display/EW8/Workbook
https://wiki.softartisans.com/display/EW8/ExcelApplication.Open

Workbook wb = xla.Open(Page.MapPath(@"templates\template.xlsx"));

4. In the sample, the user selects anywhere from 1-4 countries to include in the report. The selected countries are stored in the oList<string>
bject, . For each country, make a copy of the basic template sheet with , place the copiedselectedCountries Worksheets.CopySheet()
worksheet at the end of the workbook, and give the new sheet a name.

In this example, the sheet that needs to be copied is the first worksheet in the template file. It can be accessed through Workbook.Worksheets
by index (0) or by name ("SimpleTemplate").

for (int i = 0; i < selectedCountries.Count; i++)
{
 wb.Worksheets.CopySheet(wb.Worksheets[0], wb.Worksheets.Count,
selectedCountries[i]);
}

6. At this point the workbook contains a worksheet named after each selected country in addition to the original worksheet. Hide the original
template sheet by setting .Worksheet.Visibility

wb.Worksheets[0].Visibility = Worksheet.SheetVisibility.Hidden;

7. Select the first visible worksheet to be displayed when the file first is opened using .Worksheets.Select()

wb.Worksheets[1].Select();

8. The final code for the method should look like this:GenerateTemplate()

protected void GenerateTemplate()
{
 xla = new ExcelApplication();
 wb = xla.Open(Page.MapPath(@"templates\template.xlsx"));

 for (int i = 0; i < selectedCountries.Count; i++)
 {
 wb.Worksheets.CopySheet(wb.Worksheets[0], wb.Worksheets.Count,
selectedCountries[i]);
 }

 wb.Worksheets["SimpleTemplate"].Visibility = Worksheet.SheetVisibility.Hidden;

 wb.Worksheets[1].Select();
}

Binding Data Dynamically
1. Define a method to contain the code for binding the data to the template. In the sample, this method is called ExcelTemplate PopulateTem
plate()

https://wiki.softartisans.com/pages/viewpage.action?pageId=1967058
https://wiki.softartisans.com/display/EW8/Workbook.Worksheets
https://wiki.softartisans.com/display/EW8/Worksheet.Visibility
https://wiki.softartisans.com/pages/viewpage.action?pageId=1967037

//Use ExcelTemplate to bind data for each selected country
//to worksheets in the template, then populate the report
//with that data
protected void PopulateTemplate()
{

}

2. In the helper method, instantiate a new object.ExcelTemplate

ExcelTemplate xlt = new ExcelTemplate();

3. Pass the existing and to the object using ExcelApplication Workbook ExcelTemplate ExcelTemplate.Open(ExcelApplication,
.Workbook)

xlt.Open(xla, wb);

4. Although not necessary, it may be useful to set to . This will tell ExcelWriter to ignoreExcelTemplate.RemoveExtraDataMarkers true
any data markers that are not bound to data sets. This is helpful if you are adding the data binding calls to the code one at a time.

xlt.RemoveExtraDataMarkers = true;

5. For each selected country, data needs to be bound to the corresponding worksheet. Define a object for future useDataBindingProperties
and set up a loop to go through all the selected countries.for

DataBindingProperties dataBindProps;

for (int i = 0; i < selectedCountries.Count; i++)
{

}

The next few steps relate to code contained in the loop.for

For each selected country:

6. Retrieve the name of the country.

string country = selectedCountries[i];

7. Instantiate a new object.DataBindingProperties

dataBindProps = xlt.CreateDataBindingProperties();

8. When a data set is bound to an Excel template, any data markers with matching syntax will be populated with the data from that data set. This
can be problematic if your template contains copied sheets, where all the data markers are identical.

To get around this, set the to bind a data set only to a particular worksheet.DataBindingProperties.WorksheetName

https://wiki.softartisans.com/pages/viewpage.action?pageId=1966578
https://wiki.softartisans.com/pages/viewpage.action?pageId=1966578
https://wiki.softartisans.com/display/EW8/ExcelTemplate.RemoveExtraDataMarkers
https://wiki.softartisans.com/display/EW8/DataBindingProperties
https://wiki.softartisans.com/display/EW8/DataBindingProperties.WorksheetName

dataBindProps.WorksheetName = country;

9. Create an string array for the header values and a string array for the column names.

ExcelTemplate can be bound to numerous types of .NET data structures: single variables, arrays (1-D, jagged, multi-dimensional), DataSet,
 etc. The source of the data can come from anywhere.DataTable, IDataReader

Some of the aforementioned structures have built in column names, such as the DataTable. When working with arrays, which don't have built in
column names, you have to define the column names in a separate string array.

string[] headerValues = { "FY 2008", "Foreign Trade Division", country };
string[] headerNames = { "FiscalYear", "TradeDivision", "Country" };

10. Use the method to bind the header data to the data markers in the template file (i.e. ExcelTemplate.BindRowData %%=Header.FiscalY
).ear

BindRowData() binds a single row of data to the template, but the data markers in the template do not need to be in a single row.

xlt.BindRowData(specificInfo, headerTitles, "Header", dataBindProps);

11. Get the data for the Top and Details Sales data sets.

These calls are to a helper method that parses the CSV files and returns a with the values.GetCSVData DataTable

DataTable dts = GetCSVData(Page.MapPath("//data//" + country + "5.csv"));
DataTable dts2 = GetCSVData(Page.MapPath("//data//" + country + "All.csv"));

If you are following in your own project and would like to parse the CSV files as well, you will need to:

Add a reference to GenericParsing.dll
Include at the top of your code.GeneringParsing
Add the method that can be found in the sample code.GetCSVData

12. Use to bind the data for the Top and Details Sales data sets.ExcelTemplate.BindData

Recall that the data source names (Top, Details) need to match the data marker names exactly.

xlt.BindData(dts, "Top", dbp);
xlt.BindData(dts2, "Details", dbp);

13. The final loop should look like this:for

Following the Sample
In the sample project, we are parsing CSV files with query results, rather than querying a live database. The CSV files are available
under the directory. There is a copy of the CSV parser, in the directory of the project isdata GenericParsing.dll bin GetCSVData
defined in in a marked .Part1.aspx.cs region Utility Methods

https://wiki.softartisans.com/display/EW8/ExcelTemplate.BindRowData
https://wiki.softartisans.com/display/EW8/ExcelTemplate.BindData

for (int i = 0; i < selectedCountries.Count; i++)
{
 string country = selectedCountries[i];

 dataBindProps = xlt.CreateDataBindingProperties();

 dataBindProps.WorksheetName = country;

 string[] headerValues = { "FY 2008", "Foreign Trade Division", country };
 string[] headerNames = { "FiscalYear", "TradeDivision", "Country" };

 xlt.BindRowData(headerValues, headerNames, "Header", dataBindProps);

 DataTable dts = GetCSVData(Page.MapPath("//data//" + country + "5.csv"));
 DataTable dts2 = GetCSVData(Page.MapPath("//data//" + country + "All.csv"));

 xlt.BindData(dts, "Top", dataBindProps);
 xlt.BindData(dts2, "Details", dataBindProps);
}

14. Call to import all data into the file.ExcelTemplate.Process()

xlt.Process();

15. Call to save the output file.ExcelTemplate.Save

ExcelTemplate has several output options: save to disk, save to a stream, stream the output file in a page's Response inline or as an attachment.

xlt.Save(Page.Response, "output.xlsx", false);

16. The final code for should look like this:PopulateTemplate()

https://wiki.softartisans.com/pages/viewpage.action?pageId=1966573
https://wiki.softartisans.com/display/EW8/ExcelTemplate.Save

protected void PopulateTemplate()
{
 xlt = new ExcelTemplate(); //Create a new ExcelTemplate object

 xlt.Open(xla, wb);

 xlt.RemoveExtraDataMarkers = true;

 DataBindingProperties dataBindProps;

 for (int i = 0; i < selectedCountries.Count; i++)
 {
 string country = selectedCountries[i];

 dataBindProps = xlt.CreateDataBindingProperties();

 dataBindProps.WorksheetName = country;

 string[] headerValues = { "FY 2008", "Foreign Trade Division", country
};
 string[] headerNames = { "FiscalYear", "TradeDivision", "Country" };

 xlt.BindRowData(headerValues, headerNames, "Header", dataBindProps);

 DataTable dts = GetCSVData(Page.MapPath("//data//" + country +
"5.csv"));
 DataTable dts2 = GetCSVData(Page.MapPath("//data//" + country +
"All.csv"));

 xlt.BindData(dts, "Top", dataBindProps);
 xlt.BindData(dts2, "Details", dataBindProps);
 }
 xlt.Process();
 xlt.Save(Page.Response, "Output.xlsx", false);
}

17. Now you may run your code. Just call and to customize and populate your template.GenerateTemplate() PopulateTemplate()

Here is an example of what the sample will look like:

Note that there are multiple worksheets, each with the tab name and data for that region.

Downloads
You can download the code for the Extended Sales Summary here.

ExcelWriter_Basic_Tutorials.zip

Next Steps
Continue on to Part 2 - Adding a Coversheet

https://wiki.softartisans.com/download/attachments/1966176/ExcelWriter_Basic_Tutorials.zip?version=1&modificationDate=1392178167513&api=v2
https://wiki.softartisans.com/display/EW8/Part+2+-+Creating+a+Cover+sheet

	Part 1 - Creating a Dynamic Template

